
App Privacy

Your customers’ privacy IS job 1

Sam I Am Not
● James O’Keefe
● Captain, Massachusetts Pirate Party
● … won’t make you walk the plank
● Testing computer software since 1990
● Teaching computer privacy and security since 2012

Why you should care about your customers privacy
● The right thing to do
● If you don’t, a competitor will
● If your competitor doesn’t, differentiate what you offer

by caring about privacy
● … because a leak could tank your startup

Threat Modeling
● What data do you have to protect?
● From whom do you have to protect it?
● What harm would result if your data leaked or went away?
● What steps will you take to protect it and recover faster

if your site is compromised?

Secure yourself
● Apply security patches to your laptop/development machine
● Update the software you use with security patches
● Get a virus checker and keep it up to date
● Back up early and often

Secure your hosting and domain Services
● Be sure to secure your master hosting provider and/or

domain name service credentials with a long random
password that you store in an encrypted password manager
and back it up securely

● Those services require email addresses so get one that
isn’t your personal email address

● Turn on Multi Factor Authentication (2FA/MFA) and use an
app like Google Authenticator or Authy instead of Txts

● Can a tech at your hosting service confirm your password?
Get a new hosting service

Beware of being Phished
● No, not the band, phishing attacks
● Be careful of all emails from your hosting or domain name

provider
● If they ask you to login by clicking on a link in the

email, don’t
● Check the link by hovering over it with your mouse

pointer
● Always login in a separate window using the url you

stored in your password manager

Secure your F&^%ing servers
● Use SSH to login to your servers via a terminal, ideally

with a private/public key
● Change the server’s root or other login passwords to

something long and random. Store in an encrypted password
manager and back it up securely

● Do you control your own servers? Plan to patch the OS
regularly and frequently

Secure your F&^%ing database
● Control your own database servers? Plan to patch

frequently
● Don't make it easy for criminals, change the default DB

and admin credentials
● Passwords: Salt liberally
● User password recovery questions: Never use plain text
● Other data: encrypt as much as you can

Secure your F&^%ing application software
● Plan to patch your application software regularly and

frequently
● Setup an RSS watch for updates on the application

software you use
● … even for random third party library you get from Github
● Setup a scheduled search of the CVE and NIST

Vulnerability Databases for the application software you
use

… and know your dependencies
● Check your software’s dependencies with one of the tools

mentioned in
techbeacon.com/app-dev-testing/13-tools-checking-security
-risk-open-source-dependencies

● Do you really need some third party library that does one
little thing or can you write it yourself so you have
fewer dependencies?

Protect your connections from prying eyes
● Https protects you and

your customers
● You can pay for an SSL

certificate or use
free ones from Let’s
Encrypt
(letsencrypt.org)

● Not just for
communicating with
customers, use between
your servers

You have keys, so keep them secure
● You have login credentials
● You have database credentials
● You have private keys
● You need to keep them secure and backed up
● … on your local computer
● … ideally in an encrypted password manager
● … but not in your source repository
● … especially a public one like Github

Back it up
● Back up your servers, database and code regularly
● Store your backups in a separate location
● Encrypt your backups
● Test your disaster recovery plan
● … Having reliable (and offsite) backups helps foil

ran$omware attacks
● … and when terrorists take down your datacenter

Customer logins
● Always provide multiple third party sign on options like

OAuth, Google, Facebook or Twitter
● Never store a customer’s password in plain text
● … Always encrypt and salt passwords
● Do support Multi Factor Authentication (MFA/2FA) like

Authy and Google Authenticator. 2FA via Txt message isn’t
that secure since your phone number can be spoofed

● Keep an eye on WebAuthn

Don’t encourage bad password practices
● Short passwords are trivial to crack even with upper and

lowercase letters, numbers and special characters
● Longer passwords, especially when random, are best
● … but humans won’t remember those without a password

manager, which not enough people have
● So don’t require upper and lowercase letters, numbers and

special characters and just give them positive feedback
for longer passwords

● Never require them to update their password as they’ll
just choose <previous password>1

Authorization
● The customer can log on
● … now you have to make sure they only see their data or

data for others they are allowed to see
● Use an automated test suite to test your authorization

model to be sure data access is limited
● Don’t be AT&T, obfuscate your data ids:

○ Don’t use a numeric identifier to identify customers or their data
since since if your authorization model fails and you will leaks data

○ Use unique random identifiers so someone cannot iterate over the data

Do you really need to collect that data?
● Really?
● Really? Really?!
● Really? Really? Really?!!!

● Seriously, the less data you have, the less vulnerable
you and your customers are if your database is
compromised

● If you don’t need it, don’t collect it

Secure the data you do collect
● You know the minimum set of data you need to collect
● Analyze your dataset for what is the worst that could

happen if it was published
● Anything private to your customers (name, address, social

security number [do you really need that?], etc.) has to
be secured and encrypted.

● Think hard about how you can secure personally
identifiable information that isn’t private

● If nothing bad will happen if a piece of data gets out,
then you probably don’t need to worry about it

Designing secure code
● Never forget Little Bobby Tables (SQL Injection attacks)

● Don't leave yourself open to XSS attacks either
● Keep up with the other OWASP Top 10 entries
● … and be sure to keep up with software updates

All along the watch tower
● Put some fake data, including email addresses, in your

database that only you know about
● Register the fake emails with https://haveibeenpwned.com/
● ... so you get (sorta) advanced warning if your data

leaked

You got hacked? Come clean early
● Honesty is the best policy
● Tell them what you:

○ did to minimize the breach
○ are going to do to solve this problem now
○ are going to do to make sure it doesn’t happen again
○ are going to do to compensate your customers for their hassle (free 3

months added to membership?)

● Don't be a meme: Avoid the Streisand effect

Resources
OAuth 2.0: oauth.net/2/

OWASP Resources:

● owasp.org/index.php/SQL_Injection
● owasp.org/index.php/Cross-site_Scripting_(XSS)
● owasp.org/index.php/Category:OWASP_Top_Ten_Project

How to reach me
● Email: jokeefe@jamesokeefe.org
● My public key: https://www.jamesokeefe.org/public-key/

mailto:jokeefe@jamesokeefe.org

